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Abstract Chemical shift frequencies represent a time-

average of all the conformational states populated by a

protein. Thus, chemical shift prediction programs based on

sequence and database analysis yield higher accuracy for

rigid rather than flexible protein segments. Here we show

that the prediction accuracy can be significantly improved

by averaging over an ensemble of structures, predicted

solely from amino acid sequence with the Rosetta program.

This approach to chemical shift and structure prediction

has the potential to be useful for guiding resonance

assignments, especially in solid-state NMR structural

studies of membrane proteins in proteoliposomes.
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NMR methods for protein structure determination

increasingly rely on measurements of dipolar coupling,

chemical shift anisotropy and isotropic chemical shift to

provide molecular orientation and backbone dihedral angle

(/, w) restraints (Delaglio et al. 2000; Tian et al. 2001;

Marassi and Opella 2003; Asbury et al. 2006; Cavalli et al.

2007; Shen et al. 2008; Wishart et al. 2008). This approach

relieves the time-consuming burden of measuring multiple,

long-range distances from side chains, and facilitates

solution NMR and solid-state NMR structure determination

by molecular fragment replacement for soluble proteins in

water (Shen et al. 2008; Raman et al. 2010), membrane

proteins in micelles (Berardi et al. 2011) and membrane

proteins in lipid bilayers (Das et al. 2012; Marassi and

Opella 2003; Sharma et al. 2010; Park et al. 2012).

While dipolar couplings and chemical shift anisotropies

have the distinct advantage of directly reflecting molecular

orientation relative to the direction of the magnetic field or

the lipid bilayer membrane, isotropic chemical shifts are

also important sources of structural information (Clayden

and Williams 1982; Dalgarno et al. 1983; Saito 1986;

Gross and Kalbitzer 1988; Szilagyi and Jardetzky 1989;

Pastore and Saudek 1990; Osapay and Case 1991; Spera

and Bax 1991; Wishart et al. 1991; Iwadate et al. 1999).

Several approaches have been developed both for deriving

backbone dihedral angles from chemical shifts (Luginbuhl

et al. 1995; Cornilescu et al. 1999) and for generating

protein structures using chemical shifts as the sole source

of experimental restraints, including CHESHIRE (Cavalli

et al. 2007), CS23D (Wishart et al. 2008) and CS-Rosetta

(Shen et al. 2008; Shen et al. 2009).

The reverse process, where isotropic chemical shifts are

predicted from a structural model is also possible. Chem-

ical shifts can be calculated ab initio from molecular

structures (de Dios et al. 1993; Xu and Case 2001; Vila

et al. 2008; Vila et al. 2009) and methods based on neural

networks also make good chemical shift predictions (Me-

iler 2003). However, methods based on sequence homol-

ogy and database analysis, such as ShiftX (Neal et al.

2003), ShiftX2 (Han et al. 2011), SPARTA (Shen and Bax

2007), SPARTA? (Shen and Bax 2010), CamShift

(Kohlhoff et al. 2009), and shAIC (Nielsen et al. 2012),
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have been shown to yield better agreement between

experimentally observed and predicted values.

As proteins are intrinsically dynamic, the experimen-

tally measured isotropic chemical shifts represent both an

ensemble and time average over all explored conforma-

tional states (Mittag and Forman-Kay 2007). Thus, sig-

nificant improvements in chemical shift prediction have

been obtained either by averaging the predicted chemical

shifts over extended (*1 ls) molecular dynamics trajec-

tories (Li and Bruschweiler 2009), or by averaging over

molecular dynamics trajectories obtained by enhanced

conformational space sampling (Markwick et al. 2010).

Here we show that averaging over an ensemble of pro-

tein structural models, predicted de novo from their amino

acid sequences, can also significantly improve the root-

mean-square difference (RMSD) between predicted and

experimental chemical shift values. We demonstrate this

for two proteins from the bacterial mercury detoxification

Mer operon: the soluble periplasmic protein MerP, whose

structure has been determined by solution NMR in aqueous

buffer (Steele and Opella 1997), and the integral membrane

protein MerF, whose structure has been determined by

solid-state NMR in proteoliposomes (Das et al. 2012), by

solid-state NMR in magnetically aligned phospholipid

bilayers (De Angelis et al. 2006), and by solution NMR in

detergent micelles (Howell et al. 2005).

The Rosetta program is very successful for predicting

atomic level three-dimensional structures of proteins from

their amino acid sequences (Das and Baker 2008). Starting

with the sequences of MerP (all 72 residues) and MerFt

(residues 13–72 in the helix-loop-helix integral membrane

core of 81-residue MerF), we performed blind structure

predictions using Rosetta, by excluding the PDB structural

coordinates of the two proteins as well as their homologues

from the structure prediction database. For each protein,

10,000 coarse-grained structural models were generated

and then refined by all-atom relaxation, performed with

either the implicit aqueous environment protocol (for

MerP) or the implicit membrane protocol (for MerFt)

available in Rosetta 3.2 (Das and Baker 2008; Yarov-

Yarovoy et al. 2006). The refined all-atom structures were

clustered according to their overall energy and their

backbone CA atom RMSD to the lowest energy structure

with a cutoff of 5 Å. For each protein, the most populated

cluster of molecular ensembles encompassed more than

40 % of the entire sampling space and contained 5,928

structures for MerP and 4,273 structures for MerFt.

For each of these structures, isotropic chemical shifts

were predicted using ShiftX2 (v1.03) (Han et al. 2011) and

SPARTA? (Shen and Bax 2010), and then averaged over

an increasing number of conformations, ranked from low-

est to highest all-atom energy, in selected Rosetta ensem-

bles. The results were compared to the experimental

chemical shift values measured for MerP in aqueous buffer

(Steele and Opella 1997) or the values measured with MAS

solid-state NMR experiments on MerFt in proteoliposomes

(Das et al. 2012).

The protein structures predicted with Rosetta agree very

well with those determined by NMR, with backbone

RMSDs of 1.4 Å for MerP and 6.0 Å for MerFt (Fig. 1).

For MerFt, the higher RMSD reflects primarily confor-

mational differences in the termini of the two structures.

However, this does not seem to adversely affect the

accuracy of chemical shift prediction. More substantial

motions in the terminal regions could help mask any con-

formational differences through averaging, resulting in

both more accurate chemical shift prediction and its

improvement upon ensemble averaging (see below).

The chemical shifts measured for backbone 15N and
13CA sites of MerFt in proteoliposomes by solid-state

NMR agree remarkably well with those measured from the

same protein in micelles by solution NMR (Fig. 2), indi-

cating that the overall transmembrane helical structure of

the protein is preserved in the two different environments.

It will be interesting to examine whether good correlations

can also observed for lipid-water interfacial helices of

membrane proteins where the environment is highly

heterogeneous.

Significant correlation has been found to exist between

the accuracy of a Rosetta structural model and its agree-

ment with experimental chemical shifts (Shen et al. 2008).

Furthermore, the model quality required for accurate

chemical shift prediction will likely depend on the extent

of local dynamics and on the specific nature of the protein’s

structure. For example, mixed a–b structures, such as

MerP, are more challenging to model than a-helical

structures, such as MerFt (Bonneau et al. 2001). Never-

theless, for both MerP and MerFt, a significant improve-

ment in chemical shift prediction accuracy was observed

when the predicted frequencies were averaged over an

ensemble of conformations, rather than taken from a single

lowest energy structural model (Fig. 1d, h; Table 1).

The chemical shifts predicted from the single lowest

energy Rosetta structures correlate well with the experi-

mental data, with cumulative RMSDs of 6.2 for MerP (N,

HN, CA, CB) and 7.7 for MerFt (N, CA, CO). However,

ensemble-averaging of the chemical shifts yielded lower

cumulative RMSDs for both proteins, 5.7 for MerP and 6.8

for MerFt, representative of a *12 % improvement over

single structure prediction. ShiftX2 (Table 1; Figs. 1, 3, 4)

and SPARTA? (data not shown) yielded similar results,

although somewhat better prediction accuracy was

obtained with ShiftX2.

Correlation with the experimental data improves as the

predicted chemical shifts are averaged over an increasing

number of ensemble structures (Fig. 3). The improvement
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levels off when [10 structural models are included in the

averaging process, reflecting the onset of contributions

from higher energy conformers and indicating that a

Rosetta ensemble of 10 lowest energy structures is a better

representation of the native structure than the single lowest

energy model.

Notably, within a given conformational ensemble, the

accuracy of chemical shift prediction is always better when

the data are averaged over multiple conformations rather

than taken individually, although averaging over the lowest

energy structures (Fig. 3, black solid line) yields the most

accurate prediction. For example, averaging the predicted

chemical shifts over an ensemble of 100 highest Rosetta

energy structures ranked from lowest to highest energy

(Fig. 3, black dashed line) also yields an improvement in

prediction accuracy. For MerFt, the improvement levels off

at the same value as for prediction from the lowest energy

ensemble, albeit after including at least twice as many

conformations (Fig. 3b). For MerP, ensemble averaging

over the higher energy structures improves the prediction

but the accuracy never reaches the level obtained for the

low energy ensembles (Fig. 3a). This difference between

MerP and MerFt may reflect differences in protein

dynamics, as well as the distinctly different conformations

and environments of the two proteins (compact, soluble a–

b structure for MerP; two transmembrane a-helices for

MerFt). Since MerP is water-soluble and MerF is an inte-

gral membrane protein, their respective models were pre-

dicted using either the all atom implicit solvent potential

(MerP) or the all atom implicit membrane potential

(MerFt) of Rosetta.

The most notable improvements in prediction accuracy

from ensemble averaging were obtained for the 15N nuclei

(Table 1). Furthermore, the degree of improvement corre-

lates with protein dynamics (Fig. 4). Similar results were

reported in a previous study where the predicted chemical

shifts were averaged over molecular dynamics trajectories

(Markwick et al. 2010). This is consistent with the obser-

vation that chemical shift prediction programs based on

Fig. 1 Conformational ensemble averaging improves chemical shift

prediction for the soluble periplasmic protein MerP (a–d) and the

integral membrane protein MerFt (e–h). a, e Overlay of 10 lowest

energy Rosetta structures of MerP and MerFt. b, f Overlay of 10

lowest energy structures determined by solution NMR for MerP

(PDB: 1AFI) and by solid-state NMR for MerFt (PDB: 2LJ2). c,

g Overlay of lowest energy structures from Rosetta (gray) and NMR

(red). d, h Correlation between experimental and predicted 15N

chemical shifts obtained for the single lowest energy Rosetta structure

(red), or by averaging over an ensemble of 20 lowest energy Rosetta

structures (black). Experimental chemical shifts and NMR coordi-

nates were taken from the published data for MerP in aqueous

solution (Steele and Opella 1997) and MerFt in proteoliposomes (Das

et al. 2012)

Fig. 2 Correlation between solution and solid-state NMR chemical

shifts of MerFt. The 15N and 13CA chemical shifts were measured for

MerFt in micelles by solution NMR (Howell et al. 2005) and in

proteoliposomes by solid-state NMR (Das et al. 2012). The RMSDs

are 1.27 ppm for 15N and 1.99 ppm for 13CA
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homology and database analysis yield higher prediction

accuracy for rigid rather than flexible protein segments, and

explains why they can be improved by ensemble averaging

(Shen and Bax 2010). For MerP (Fig. 4a) the largest

improvements in prediction accuracy coincide with resi-

dues in the b1–a1 metal-binding loop, which is more

flexible than the rest of the protein (Steele and Opella

1997). For MerFt (Fig. 4b), prediction improvements

coincide primarily with the more flexible C-terminus of the

protein.

The effects of side-chain conformation on backbone

chemical shifts are well recognized (de Dios et al. 1993;

Wang and Jardetzky 2004; Vila et al. 2007; Villegas et al.

2007; London et al. 2008; Mulder 2009). For example,

Table 1 RMSDs between experimental and predicted shifts obtained for a single structure (n = 1) or by averaging over an ensemble of n

structures generated by Rosetta prediction or determined by NMR spectroscopy

Structure RMSD (ppm)

n HN N CA CB CO Cumulative

MerP (Rosetta) 1 0.63 3.10 1.39 1.11 6.2

20 0.61 2.81 1.23 1.04 5.7

100 0.61 2.84 1.24 1.05 5.7

MerP (1AFI) 1 0.71 4.93 1.61 1.65 8.9

20 0.69 4.43 1.49 1.53 8.1

MerFt (Rosetta) 1 2.77 2.31 2.57 7.7

20 2.53 1.74 2.50 6.8

100 2.49 1.80 2.49 6.8

MerFt (2LJ2) 1 2.90 1.66 2.54 7.1

20 2.42 1.59 2.38 6.4

100 2.40 1.61 2.38 6.4

Fig. 4 Residue-specific improvement in 15N chemical shift predic-

tion accuracy obtained by ensemble averaging for MerP (a) and

MerFt (b). The improvement value (DN) is the difference between

experimentally observed chemical shifts and chemical shifts predicted

from single lowest energy Rosetta structure (red), or chemical shifts

predicted and averaged over 20 lowest energy Rosetta structures

(black). Protein secondary structures are shown above the graphs

Fig. 3 Improvement in cumulative RMSD between experimental and

predicted chemical shifts due to ensemble averaging for MerP (a) and

MerFt (b). Predicted chemical shifts were averaged over increasing

numbers of ensemble structures ranked from lowest to highest energy.

(Red) Ensembles of lowest energy NMR structures. (Black solid line)

Ensembles of lowest energy Rosetta structures. (Black dashed line)

Ensembles of 100 highest energy Rosetta structures
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excluding v1 torsion angle input information from

SPARTA? chemical shift prediction has been shown to

decrease the agreement with experimental data by 5 % for
15N and by 1–2 % for other nuclei (Shen and Bax 2010). In

the case of MerFt, an additional 5 % improvement in

prediction accuracy is observed when the chemical shifts

are predicted for and averaged over the experimentally

determined solid-state NMR conformers (Fig. 3b, red).

This likely coincides with refinement of side chain con-

formations by the NMR-restrained simulated annealing

performed during structure refinement (Das et al. 2012). In

the case of MerP, the accuracy of chemical shifts predicted

from the NMR structure is poorer than that obtained from

Rosetta (Fig. 3a, red). This reflects local differences in

backbone dihedral angles between the NMR and Rosetta

structures of MerP, found primarily in the b1–a1 and a1–

b2 loops (Fig. 5a, b) and may be due to a localized dis-

tortion in the NMR structure. Conversely for MerFt, the

local dihedral angles of the Rosetta and NMR structures are

very similar (Fig. 5c, d) even though the overall backbone

RMSD is poorer. The results in Figs. 3 and 5 indicate that

local dihedral angles can have a substantial impact on the

accuracy of chemical shift prediction even in cases, such as

MerP, where the overall fold is accurate.

In summary, we show that the accuracy of chemical

shift prediction can be significantly improved by averaging

over an ensemble of conformations predicted de novo

solely from the amino acid sequence. Ensemble averaging

improves the prediction accuracy both for solution NMR

data from a globular protein in water and for solid-state

NMR data from an integral membrane protein in proteo-

liposomes. The resulting chemical shift prediction accuracy

(cumulative RMSD *6 ppm) is comparable to the accu-

racy obtained by ensemble averaging over MD trajectories

of crystal structures (Markwick et al. 2010). It is not clear

whether this accuracy is sufficient to assign the resonances

of an entire protein, nonetheless, it definitely has the

potential to resolve ambiguities and provide validation in

the early stages of experimental structural determination by

NMR.

Estimates of the protein size and type compatible with de

novo Rosetta structure prediction vary with protein sec-

ondary structure and the exact methods used in prediction

(Das and Baker 2008). Small a-helical proteins (up to *120

residues) are typically well within the size and complexity

limits of Rosetta, while mixed a–b structures are more

challenging to model (Bonneau et al. 2001). The incorpo-

ration of chemical shifts in Rosetta structure prediction has

been shown to dramatically improved correct structure

convergence for proteins up to 100 residues (Shen et al.

2008) and the addition of RDCs further improves conver-

gence for proteins up to 200 residues (Raman et al. 2010).

Rosetta structure prediction works well for many proteins

up to 100 amino acids using sequence information alone

(Bradley et al. 2005) and for significantly larger proteins

when assisted by a template (Das et al. 2007). The estimates

Fig. 5 Agreement between backbone dihedral angles predicted from

Rosetta or determined experimentally for MerP (a, b) and MerFt (c,

d). a, c Cumulative difference between the backbone dihedral angles

(/, w) determined by NMR and predicted from Rosetta

(Dcum = D/ ? Dw). b, d Overlay of NMR (gray) and Rosetta

(red) structures. Dihedral angles for MerP residues M12, V28 and

E29 differ significantly between the NMR and Rosetta structures
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may be even better for membrane proteins where the lipid

bilayer membrane that is modeled implicitly in Rosetta

(Yarov-Yarovoy et al. 2006) provides additional confor-

mational and spatial restraints. Furthermore, recent methods

for structure prediction based on evolutionary coupling can

be used to provide very good models of both soluble and

integral membrane proteins (Marks et al. 2011; Hopf et al.

2012).

In cases where good structural models can be predicted

from amino acid sequence alone, or with assistance of a

template derived from sequence homology, or by evolu-

tionary coupling methods, the ensemble-averaging

approach described here could provide useful information

at a very early stage of a protein structure determination

project. In particular, it could serve as a useful guide and

validation tool for resonance assignment during de novo

solid-state NMR structure determination of membrane

proteins, where the process is complicated by broader or

overlapped lines and, typically, the absence of 1H signals,

and especially when combined with recently developed

automated assignments methods (Moseley et al. 2010;

Tycko and Hu 2010).
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